Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405150, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591857

RESUMO

In biological systems, nucleotide quadruplexes (such as G-quadruplexes) in DNA and RNA that are held together by multiple hydrogen bonds play a crucial functional role. The biomimetic formation of these hydrogen-bonded quadruplexes captured by artificial systems in water poses a significant challenge but can offer valuable insights into these complex functional structures. Herein, we report the formation of biomimetic hydrogen-bonded G•C•G•C quadruplex captured by a tetraphenylethene (TPE) based octacationic spirobicycle (1). The spirobicyclic compound possesses a three-dimensional (3D) crossing dual-cavity structure, which enables the encapsulation of four d(GpC) dinucleotide molecules, thereby realizing 1:4 host-guest complexation in water. The X-ray structure reveals that four d(GpC) molecules further form a two-layer G•C•G•C quadruplex with Watson-Crick hydrogen bonds, which are stabilized within the dual hydrophobic cavities of 1 through the cooperative non-covalent interactions of hydrogen bonds, CH···π interactions, and hydrophobic effect. Due to the dynamically-rotational propeller chirality of TPE units, 1 with adaptive chirality can further serve as a chiroptical sensor to exhibit opposite Cotton effects with mirror-image CD spectra for the pH-dependent hydrogen-bonded assemblies of d(GpC) including the Watson-Crick G•C•G•C (pH 9.22) and Hoogsteen G•C+•G•C+ (pH 5.74) quartets through the host-guest chirality transfer in water.

2.
Nano Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602471

RESUMO

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

3.
Nat Commun ; 15(1): 3048, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589497

RESUMO

Flexible pressure sensors can convert mechanical stimuli to electrical signals to interact with the surroundings, mimicking the functionality of the human skins. Piezocapacitive pressure sensors, a class of most widely used devices for artificial skins, however, often suffer from slow response-relaxation speed (tens of milliseconds) and thus fail to detect dynamic stimuli or high-frequency vibrations. Here, we show that the contact-separation behavior of the electrode-dielectric interface is an energy dissipation process that substantially determines the response-relaxation time of the sensors. We thus reduce the response and relaxation time to ~0.04 ms using a bonded microstructured interface that effectively diminishes interfacial friction and energy dissipation. The high response-relaxation speed allows the sensor to detect vibrations over 10 kHz, which enables not only dynamic force detection, but also acoustic applications. This sensor also shows negligible hysteresis to precisely track dynamic stimuli. Our work opens a path that can substantially promote the response-relaxation speed of piezocapacitive pressure sensors into submillisecond range and extend their applications in acoustic range.

4.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338410

RESUMO

Ellagic acid, known for its various biological activities, is widely used. Ellagic acid from pomegranate peels is safe for consumption, while that from gallnuts is only suitable for external use. However, there is currently no effective method to confirm the source of ellagic acid. Therefore, this study establishes an analysis method using ultra-high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry (UHPLC-ESI-HR-MS) to identify the components of crude ellagic acid extracts from pomegranate peels and gallnuts. The analysis revealed that there was a mix of components in the crude extracts, such as ellagic acid, palmitic acid, oleic acid, stearic acid, and 9(10)-EpODE. Furthermore, it could be observed that ellagic acid extracted from gallnuts contained toxic substances such as anacardic acid and ginkgolic acid (15:1). These components could be used to effectively distinguish the origin of ellagic acid from pomegranate peels or gallnuts. Additionally, a rapid quantitative analysis method using UHPLC-ESI-MS with multiple reaction monitoring (MRM) mode was developed for the quality control of ellagic acid products, by quantifying anacardic acid and ginkgolic acid (15:1). It was found that one of three ellagic acid health care products contained ginkgolic acid (C15:1) and anacardic acid at more than 1 ppm.


Assuntos
Ácidos Anacárdicos , Punica granatum , Salicilatos , Espectrometria de Massas por Ionização por Electrospray/métodos , Extratos Vegetais/química , Ácido Elágico/química , Cromatografia Líquida de Alta Pressão/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38372937

RESUMO

The increasing infection and drug resistance frequency has encouraged the exploration of new and effective anti-Candida albicans agents. In this study, CT-K3K7, a scorpion antimicrobial peptide derivative, effectively inhibit the growth of C. albicans. CT-K3K7 killed C. albicans cells in a dose-dependent manner, mainly by damaging the plasma membrane. CT-K3K7 could also disrupt the nucleus and interact with nucleic acid. Moreover, CT-K3K7 induced C. albicans cells necrosis via a reactive oxygen species (ROS)-related pathway. Furthermore, CT-K3K7 inhibited the hyphal and biofilm formation of C. albicans. In the mouse skin subcutaneous infection model, CT-K3K7 significantly prevented skin abscess formation and reduced the number of C. albicans cells recovered from the infection area. Taken together, CT-K3K7 has the potential to be a therapeutic for C. albicans skin infections.

6.
Cell Signal ; 116: 111033, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38182068

RESUMO

BACKGROUND: Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is an aggressive disease with an overall poor prognosis. Pancreatitis is a major risk factor for the development of PDAC. Due to the lack of reliable and accurate biomarkers, the diagnosis, treatment, and prognosis of PDAC face great challenges. It is of great significance to elucidate the pathogenesis of PDAC and explore novel inflammatory biomarkers. METHODS: We identified E3 ubiquitin ligases associated with pancreatic inflammation by combining multiple GEO datasets and UbiNet 2.0, and integrating the WGCNA algorithm and Limma R package. A risk score model for PDAC patients was established by using LASSO regression. We investigated the correlation between FBXW11 and immune cell infiltration using CIBERSORT, mMCP-counter, ImmuCellAI-mouse, QUANTISEQ, and TIMER algorithms, based on GEO, ArrayExpress, and TCGA datasets. We used Ubibrowser 2.0 to predict potential substrates for FBXW11. WikiPathway, MSigDB Hallmark, and Elsevier pathway analysis of FBXW11 key substrates were also performed using the EnrichR database. We detected protein expression through IHC, immunofluorescence, and western blot in the cerulein-induced acute pancreatitis mouse model. RESULTS: We first identified that FBXW11 exhibited a clear tendency to gradually increase in normal, pancreatitis, and PDAC patients. The validation analysis revealed that the FBXW11 protein exhibited significantly high expression in cerulein-induced acute pancreatitis mice, with its distribution primarily observed in the cytoplasm. Simultaneously, we developed a risk model utilizing the genes associated with FBXW11 to forecast the outcome of patients with PDAC and the likelihood of pancreatitis advancing to pancreatic cancer. Functional analysis showed that FBXW11, as a novel inflammatory biomarker, had a significant positive correlation with macrophage infiltration and the NF-κB signaling pathway. Finally, the western blot assay of the NF-κB signaling pathway in pancreatic tissues demonstrated that high activation of NF-κB was correlated with high expression of FBXW11. CONCLUSIONS: Our research not only provides evidence for FBXW11 as a novel inflammatory biomarker but also provides new insights into the research and clinical treatment of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Pancreatite , Animais , Humanos , Camundongos , Doença Aguda , Proteínas Contendo Repetições de beta-Transducina , Biomarcadores , Ceruletídeo , NF-kappa B , Transdução de Sinais , Ubiquitina-Proteína Ligases
7.
Sci Rep ; 14(1): 1336, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228652

RESUMO

Early diagnosis and intervention of Alzheimer's disease (AD) are particularly important to delay the pathological progression. Although fluorescent probes have been widely employed for investigating and diagnosing AD, their biological applications are significantly restricted due to the low penetration ability of the blood-brain barrier (BBB) in vivo. In this study, we reported the first Golgi-targeted two-photon (TP) fluorescent probe, DCM-DH, for detecting viscosity in the Golgi apparatus. The probe was rationally designed to exhibit superior analytical performance including high sensitivity, specific Golgi-targeting, efficient BBB penetration ability, and deep tissue penetration (247 µm) in the brains of AD model mice. Using the probe, we demonstrated that the fluorescence intensity in the human liver cancer cell (HepG2 cells) was higher than that of human normal liver cell (LO2 cells), and the brain viscosity of AD model mice increased significantly. We anticipate that this competent tool could be easily extended to other AD biomarkers for fundamental research on this detrimental disease.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Viscosidade , Detecção Precoce de Câncer , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Corantes Fluorescentes , Peptídeos beta-Amiloides/metabolismo
8.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257037

RESUMO

Carbon nanotubes (CNTs) and graphene have commonly been applied as the sensitive layer of strain sensors. However, the buckling deformation of CNTs and the crack generation of graphene usually leads to an unsatisfactory strain sensing performance. In this work, we developed a universal strategy to prepare welded CNT-graphene hybrids with tunable compositions and a tunable bonding strength between components by the in situ reduction of CNT-graphene oxide (GO) hybrid by thermal annealing. The stiffness of the hybrid film could be tailored by both initial CNT/GO dosage and annealing temperature, through which its electromechanical behaviors could also be defined. The strain sensor based on the CNT-graphene hybrid could be applied to collect epidermal bio-signals by both capturing the faint skin deformation from wrist pulse and recording the large deformations from joint bending, which has great potential in health monitoring, motion sensing and human-machine interfacing.

9.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257493

RESUMO

As 5G networks become more complex and heterogeneous, the difficulty of network operation and maintenance forces mobile operators to find new strategies to stay competitive. However, most existing network fault diagnosis methods rely on manual testing and time stacking, which suffer from long optimization cycles and high resource consumption. Therefore, we herein propose a knowledge- and data-fusion-based fault diagnosis algorithm for 5G cellular networks from the perspective of big data and artificial intelligence. The algorithm uses a generative adversarial network (GAN) to expand the data set collected from real network scenarios to balance the number of samples under different network fault categories. In the process of fault diagnosis, a naive Bayesian model (NBM) combined with domain expert knowledge is firstly used to pre-diagnose the expanded data set and generate a topological association graph between the data with solid engineering significance and interpretability. Then, as the pre-diagnostic prior knowledge, the topological association graph is fed into the graph convolutional neural network (GCN) model simultaneously with the training data set for model training. We use a data set collected by Minimization of Drive Tests under real network scenarios in Lu'an City, Anhui Province, in August 2019. The simulation results demonstrate that the algorithm outperforms other traditional models in fault detection and diagnosis tasks, achieving an accuracy of 90.56% and a macro F1 score of 88.41%.

10.
Talanta ; 269: 125437, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070282

RESUMO

A needle-solid-phase microextraction (SPME) method based on hybrid monolithic column (HMC) was proposed for simultaneous separation and extraction of seven amphetamine-type stimulants (ATSs) (amphetamine, methamphetamine, cathinone, methcathinone, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxyethylamphetamine), combining with ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometer (UPLC-QTRAP MS/MS). Thiol functionalized HMC (T-HMC) showed high extraction efficiency and excellent elution results towards target analytes, among three kinds of single/bi-functionalized HMCs. Various parameters of SPME operation and analytical performance were investigated systematically. The adsorption mechanism of T-HMC to ATSs was also discussed and explained as a mixed mode of electrostatic and hydrophobic interactions. Under the optimum experimental conditions, the proposed T-HMC needle-SPME-UPLC-QTRAP MS/MS method was rapid and convenient with good accuracy, low sample consumption, high sensitivity and strong anti-interference ability. This method was successfully applied to quantitative determination of seven trace ATSs in complex sewage and urine samples. In view of abundant types of HMCs, the needle-SPME based on functional HMC also had the potential to selectively separating and enriching other tract new psychoactive substances in complex matrices, and could provide a reliable tool for drug monitoring, especially in applications for forensic analysis and drug abuse.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Esgotos , Microextração em Fase Sólida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos
11.
ACS Omega ; 8(48): 45867-45877, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075751

RESUMO

The economic and practical strategies of direct nucleophilic attack/addition cyclization and C-H bond activation reactions to synthesize 3-benzyl-/3-benzyl-2-phenyl-benzo[4,5]imidazo[2,1-b]thiazoles via (Z)-(2,3-dibromoprop-1-en-1-yl)benzene/(3-bromoprop-1-yn-1-yl)benzene, 1H-benzo[d]imidazole-2-thiols and halobenzenes have been developed. With the optimized reaction conditions, the nucleophilic attack/addition cyclization reaction (Cs2CO3, MeCN, 90 °C, 24 h) and C-H bond activation reaction [Pd(OAc)2/PPh3, p-xylene, 135 °C, 24 h] could tolerate various electron-donating and electron-withdrawing groups and afford new benzo[4,5]imidazo[2,1-b]thiazoles in good to excellent yields (up to 93% yield).

12.
Cell Cycle ; 22(18): 2018-2037, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37904524

RESUMO

Ring finger protein 6 (RNF6) is a member of the E3 ubiquitin ligase family. Previous studies have reported the involvement of RNF6 as a ubiquitin ligase in the progression of gastric cancer (GC). However, this study found that RNF6 has a clear localization in the nucleus of GC, indicating a role other than ubiquitin ligase. Further chromatin immunoprecipitation sequencing (ChIP-seq) analysis revealed that RNF6 has DNA binding and transcriptional regulatory effects and is involved in important pathways such as tumor cell cycle and apoptosis. Cyclin A1 (CCNA1) and CREB binding protein (CREBBP) are downstream targets for RNF6 transcription regulation in GC. RNF6 binds to the promoter region of CCNA1/CREBBP and is actively regulating their expression in GC cells. Silencing CCNA1/CREBBP partially reversed the promoting effect of RNF6 overexpression on the biological function of GC cells. Our study suggests that RNF6 promotes the progression of GC by regulating CCNA1/CREBBP transcription.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Gástricas , Humanos , Proteínas de Ligação a DNA/metabolismo , Neoplasias Gástricas/genética , Ciclina A1 , Proteína de Ligação a CREB , Ubiquitina , Ligases , Proliferação de Células/genética , Linhagem Celular Tumoral
13.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703875

RESUMO

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Assuntos
Macrófagos , Humanos , Diferenciação Celular , Linhagem da Célula , Macrófagos/citologia , Microglia , Especificidade de Órgãos
14.
Adv Healthc Mater ; 12(29): e2301838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602671

RESUMO

Arteriosclerosis, which appears as a hardened and narrowed artery with plaque buildup, is the primary cause of various cardiovascular diseases such as stroke. Arteriosclerosis is often evaluated by clinically measuring the pulse wave velocity (PWV) using a two-point approach that requires bulky medical equipment and a skilled operator. Although wearable photoplethysmographic sensors for PWV monitoring are developed in recent years, likewise, this technique is often based on two-point measurement, and the signal can easily be interfered with by natural light. Herein, a single-point strategy is reported based on stable fingertip pulse monitoring using a flexible iontronic pressure sensor for heart-fingertip PWV (hfPWV) measurement. The iontronic sensor exhibits a high pressure-resolution on the order of 0.1 Pa over a wide linearity range, allowing the capture of characteristic peaks of fingertip pulse waves. The forward and reflected waves of the pulse are extracted and the time difference between the two waves is computed for hfPWV measurement using Hiroshi's method. Furthermore, a hfPWV-based model is established for arteriosclerosis evaluation with an accuracy comparable to that of existing clinical criteria, and the validity of the model is verified clinically. The work provides a reliable technique that can be used in wearable arteriosclerosis assessment systems.


Assuntos
Arteriosclerose , Doenças Cardiovasculares , Dispositivos Eletrônicos Vestíveis , Humanos , Análise de Onda de Pulso , Arteriosclerose/diagnóstico , Monitorização Fisiológica
16.
Carbohydr Polym ; 313: 120852, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182952

RESUMO

Curcumin (Cur) is a natural pigment with excellent biological activity. The poor stability and insolubility of Cur in water severely limit its application. Therefore, to overcome these dilemmas which are big hindrances in their application, a novel derivative (COCS-Cur) was prepared by the esterification reaction of carboxylated chitosan (COCS) and Cur. The structure and properties of conjugate were determined through a series of characterizations. The derivatives had excellent solubility as well as stability. In addition, antioxidant and photodynamic antibacterial experiments proved that COCS-Cur had the excellent free radical scavenging ability and photodynamic antibacterial activity. The derivatives presented a better antibacterial effect on Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli). Noteworthy, the COCS-Cur derivatives showed no obvious toxicity which makes them a stronger contender and potential antimicrobial agent or functional nutrient for application in the food industry.


Assuntos
Quitosana , Curcumina , Curcumina/química , Quitosana/farmacologia , Quitosana/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química
17.
Front Bioeng Biotechnol ; 11: 1196174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229496

RESUMO

The rapid progress of interdisciplinary researches from materials science, biotechnologies, biomedical engineering, and medicine, have resulted in the emerging of bioinspired skins for various fantasticating applications. Bioinspired skin is highly promising in the application of rehabilitation medicine owing to their advantages, including personalization, excellent biocompatibility, multi-functionality, easy maintainability and wearability, and mass production. Therefore, this review presents the recent progress of bioinspired skin towards next-generation rehabilitation medicine. The classification is first briefly introduced. Then, various applications of bioinspired skins in the field of rehabilitation medicine at home and abroad are discussed in detail. Last, we provide the challenges we are facing now, and propose the next research directions.

18.
Front Physiol ; 14: 1154694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082243

RESUMO

The kidney plays a central role in maintaining the fluid and electrolyte homeostasis in the body. Bicarbonate transporters NBCn1, NBCn2, and AE2 are expressed at the basolateral membrane of the medullary thick ascending limb (mTAL). In a previous study, NBCn1, NBCn2, and AE2 are proposed to play as a regulatory pathway to decrease NaCl reabsorption in the mTAL under high salt condition. When heterologously expressed, the activity of these transporters could be stimulated by the InsP3R binding protein released with inositol 1,4,5-trisphosphate (IRBIT), L-IRBIT (collectively the IRBITs), or protein phosphatase PP1. In the present study, we characterized by immunofluorescence the expression and localization of the IRBITs, and PP1 in rat kidney. Our data showed that the IRBITs were predominantly expressed from the mTAL through the distal renal tubules. PP1 was predominantly expressed in the TAL, but is also present in high abundance from the distal convoluted tubule through the medullary collecting duct. Western blotting analyses showed that the abundances of NBCn1, NBCn2, and AE2 as well as the IRBITs and PP1 were greatly upregulated in rat kidney by dietary sodium. Co-immunoprecipitation study provided the evidence for protein interaction between NBCn1 and L-IRBIT in rat kidney. Taken together, our data suggest that the IRBITs and PP1 play an important role in sodium handling in the kidney. We propose that the IRBITs and PP1 stimulates NBCn1, NBCn2, and AE2 in the basolateral mTAL to inhibit sodium reabsorption under high sodium condition. Our study provides important insights into understanding the molecular mechanism for the regulation of sodium homeostasis in the body.

20.
Front Microbiol ; 14: 1117312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970682

RESUMO

Lead (Pb) contamination of planting soils is increasingly serious, leading to harmful effects on soil microflora and food safety. Exopolysaccharides (EPSs) are carbohydrate polymers produced and secreted by microorganisms, which are efficient biosorbent materials and has been widely used in wastewater treatment to remove heavy metals. However, the effects and underlying mechanism of EPS-producing marine bacteria on soil metal immobilization, plant growth and health remain unclear. The potential of Pseudoalteromonas agarivorans Hao 2018, a high EPS-producing marine bacterium, to produce EPS in soil filtrate, immobilize Pb, and inhibit its uptake by pakchoi (Brassica chinensis L.) was studied in this work. The effects of strain Hao 2018 on the biomass, quality, and rhizospheric soil bacterial community of pakchoi in Pb-contaminated soil were further investigated. The results showed that Hao 2018 reduced the Pb concentration in soil filtrate (16%-75%), and its EPS production increased in the presence of Pb2+. When compared to the control, Hao 2018 remarkably enhanced pakchoi biomass (10.3%-14.3%), decreased Pb content in edible tissues (14.5%-39.2%) and roots (41.3%-41.9%), and reduced the available Pb content (34.8%-38.1%) in the Pb-contaminated soil. Inoculation with Hao 2018 raised the pH of the soil, the activity of several enzymes (alkaline phosphatase, urease, and dehydrogenase), the nitrogen content (NH4 +-N and NO3 --N), and the pakchoi quality (Vc and soluble protein content), while also raising the relative abundance of bacteria that promote plant growth and immobilize metals, such as Streptomyces and Sphingomonas. In conclusion, Hao 2018 reduced the available Pb in soil and pakchoi Pb absorption by increasing the pH and activity of multiple enzymes and regulating microbiome composition in rhizospheric soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...